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1. Ideal quasi-norm (IQN). Ideal space (IS).

Let (IT, I, 7) be a measure space with nonnegative full o - finite measure 7,
L, = Lo(I1, 3, 77) be the space of 7- measurable functions f: IT—>R; L, :{ felL,: f>0 }

Definition 1.1. Amapping p:L;—[0,0 ] isan IQN if:

(P1) p(f)=0 = f=0; plaf)=ap(f), a>0,

3Ce[l,w): p(f+g)<Clp(f)+p(g) |;
(P2) f<g = p(f)<p(g) ;- monotonicity
(P3) £, 7f =  p(f,)Tp(f);-Fatou property

n

(P4) p(f)<o = f<ow.
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Definition 1.2. Let p be an IQN. The IS, generated by p is determined as

X =X(M,3,7)={feLy: [f], =p(f])<eo . (1.1)

Theorem 1.3. Let X be IS generated by IQN p .
Then, X is quasi-Banach space (Banach space for C =1).

Example. Let IT=R,=(0, ), 7=u be the Lebesgue measure, L,=M be the space of 1 -

measurable functions on R, . The Lebesgue space: X =L, (v), veM: O<v<oo,

- 1/p
(1 vex] " o<pen
0

| f ||Lw(v):esssup {| f(x)v(x)]: xeR, } p = o0.
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2. Weighted Orlicz spaces. Some General properties.

Let © be a class of functions ®:[0, 0 )— [0, ) such that ®(0)=0; @ is increasing and
left-continuous on R, =(0,0), ® (t)<o, teR,, ®(+»)=0.

Always we assume that

®e®; veM, v>0 almost everywhere onR, . (2.1)

For A>0, feMzM(R+)wedenote
3, ()= @(a*]f(x)] Jv(x)dx, (2.2)

| f]l,,=inf {2>0: 3, (f)<1}]. (2.3)
Definition 2.1. Orlicz space L, , is defined as the set of functions f e M: | f || <oo.

The following result is essentially known (see, for example [2, 11]).
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Let pe(0,1], ® be p -convexon [0, w), thatis for a, fe(0,1], a” +4" =1,
O(at+pr)< a® ®(t)+p°d(7), t,z€[0, ). (2.4)
Theorem 2.2. Let ®€®, ve M, v>0 , and condition (2.4) be fulfilled. Then,

1) The triangle inequality takes placein L, , :if f, g eL,, ,then f+ g €L, , ,and

I+ ol <(I115, + 1005, )" es)

2) | f],, ismonotone quasi-norm (norm if p=1) :
feM,|[fl<gel,,= fely,. [fl,, <]9],, (2.6)
that has Fatou property: f,eM, 0<f Tf = [f]_ | =nlim |l (2.7)

Conclusion. Under conditions of Theorem 2.2 L, , forms IS which is quasi — Banach space
(Banach space if p=1) and has Fatou property (all conditions of theorem 1.3 are fulfilled).
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Example 2.3. Let ve M, v>0; peR,, ®(t)=t". Then, ®is p, - convex with
p,=min {p, 1}. We have: L, , =L, (v) is Lebesgue space.

Example 2.4. Let veM, v>0; @:[0,00)— [0, ) be Young function, that is,
t
@(t):j(p(r)dr, 0<pT ; p(t-0)=9p(t)<w, teR,.
0

Then ® €®, and 0<¢T = dis convex on [0, « ) (see (2.4) with p =1).

9(0)=0, p(t)=1,te(0,1]; p(t)=e'", te(l,0) =
For example
: ®(t)=t, te[0,1]; ®(t)=e"", te(1,)

(2.8)



Special discretization procedure.

Now we assume that weight — function v satisfies the conditions
t
0<v(t):=jvdr<oo, VteR,. (2.9)
0

We require that V is strictly increasing and
V (+00)=00. (2.10)
For fixed b >1 let us introduce {ym} by formulas
=V (b") = V(u, J=b", mez={0,+1, +2,.}, (2.11)

where V ! is inverse function for continuous increasing function V . Then

O<py T WM g, =0; Im g =00 = R, =UA,; A,=|up, tn,). (2.12)

m— +o0 m
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3. Estimates for the norms of restrictions of monotone operator
on the cones in Orlicz space.

Cone Q of nonnegative decreasing functions:
Q={fel,,: 0<flf; (3.1)
cone Q of nonnegative decreasing step-functions:
ﬁs{feLQ‘v: f=>a,r.; os(xmi}; (3.2)
cone S of nonnegative step-functions

Sz{feLm: f=2}/m;(Am; mZO,meZ}; (3.3

Here, A, :[,um v Moy ) V(,um ):b”‘, me Z, see special discretization (2.9)-(2.12).
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Let (I1,3,7) be a measure space with nonnegative full - finite measure 77; let
L, =L, (T1,3,7) be the set of all ;- measurable functions u:TT—-R; L;={uelL: u>0}.
Let Y=Y (TI,3,n )<L, be some IS with a quasi-norm |-|| . Let P:M*—L; bea

monotone operator that is

f,heM™, f <h u—almosteverywhere = Pf < Ph n—almosteverywhere.

We consider the restrictions of P on the cones in Orlicz space L, ,, and determine norms of
restrictions

[P, =swi{[Pf], : fea, |f],, <1 (3.4)
i)

[P, =sw{[Pf], : fes,[f],,<1}. (35)

IA

IPlo., =sw {[Pf], : fed, |f],,
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Lemma 3.1. Let ®e® . We assume that @ is p—convex on [0, o) with some pe(0,1],
and v >0 satisfies the conditions (2.9) and (2.10), and realize special discretization (2.11)-
(2.12) with fixed b>1. Then the following two-sided estimates hold

IPlay <IPloy < 6™ IPls, ; (3.6)
[Plasy <Pl < c®) [P]s, (3.7)
where c(b)=[b(b-1)"|>1.

Theorem 3.2. Let the conditions of Lemma 3.1 be fulfilled. Then the following two-sided
estimate holds

c(0)™" [Pl < [Plosy < 0" [P]

QY ™

(3.8)

SoY Sy !’

Remark 3.3. Theorem 3.2 shows the main goal of the above special discretization. In this
theorem we reduce estimates on the cone of decreasing functions Q to the estimates on the cone
of nonnegative step-functions. In many cases such reduction admits us to apply known results for
step-functions or their pure discrete analogues for obtaining needed results on the cone Q. This

approach is realized in Section 4.
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4. Associate ideal space for the cone of decreasing functions
in the weighted Orlicz space

We apply the results of Section 3 to the important partial case when IS Y coincides with
weighted Lebesgue space L, ( R.;d ) geM ™, and monotone operator P =1 . In this case

||P||QHY:sup{J.fgdt: feQ; ||f||®’V£1}::||g||Q. (4.1)
0

According to Theorem 3.2 we have

[Plosy =lP sy (4.2)
where in our case, by special discretization (2.9)-(2.12), and (3.3),
IPls. =Sup{ Y @y 0yt @, 20; Z@(am)ﬂmﬂ}, 43)
meZ meZ
0,=[gdt=0; g, =[vdt=b"(b-1), meZ. (4.4)
Am A
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Note that norm (4.3) coincides with the discrete associated Orlicz norm

| {g.)

) :sup{ Y oan|g. | @20 zq)(am)ﬁmsl}, (4.5)

meZ

We will describe norm (4.5) explicitly in terms of complementary function ¥ . For simplicity in
our discussion we restrict ourselves with the case of N - functions:

<D(S)=I¢)(r)dr, pe®; (4.6)
0
Y be the complementary function for @, that is,
"P(t)=.|‘l//(2')d2', tel0,o]; w(zr)=inf {c: @(o)2c}, re[0,o]. (47)
0

Here, v is left inverse function for ¢ . Then, we®, ¥ is N - function.
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Moreover, (o )=inf {z: w(z)>0c },sothat @ itself is the complementary function for ¥ .

Some known formulas:

¥(t)=sup[st—D(s)];

st<d(s)+¥(t), s,te[0,0). (4.8)
Equality in (4.8) takes place if and only if @(s)=t or y(t)=s.
Examples.
1 o(s)=s"", pe(l,0) = w(r)=c"", Up+1/p=1;
®(s)=s/p, ¥(t)=t"/p"
2. p(s)=e*-1 = y(r)=Ih(1+7);

d(s)=e*—s—1, P(t)=(t+1)In(t+1)-t.
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Theorem 4.3. Let ®, ¥ be complementary N- functions; let
t
0<V(t)=[vdr<eo, VteR,, V(+»)=o.
0

For fixed 0<a <1 the following two-sided estimate holds

!
lalla =|
Y, v 0

t

p(9:t)=V ()" [|a(z)|dz, 6,(t)=V"(av(t)) teR..

84(t)
Remark 4.4. Assume additionally that in Theorem 4.3 ®«e (AZ). It means that

ACe(l,0): ®(2t)<Cd(t), YteR,.

t

V(t)_l'[ |g(r)|dr

0

Then, lg] o =

Y, v

p.(g)| =inf {ﬂ>0: ]E‘P(/Tl pa(g;t))v(t)dtsl},

(4.9)

(4.10)

(4.11)
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5. Applications to weighted Orlicz — Lorentz classes

For f e M we introduce distribution function
A (y)=u{xeR. | f(X)|>y} yeR,. (5.1)
Let f * be the decreasing rearrangement of function f , that is
fr(t)=inf {yeR,: 2, (y)<t} teR,. (5.2)
Weighted Orlicz — Lorentz class A, |, :{ feM (R+ ): f'e Lq)‘v} is equipped by

| £<],,=if {2>0: 3, (£°)=<1}. (5.3)

Jl(f*)=Tq)([1f*(t))v(t)dt, 2>0, (5.4)

0
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We will describe the associated space A';, , with the norm

0

lal. :=sup{j [fgldt: fen,,:|[f],, 31} .
We use the following properties of decreasing rearrangements

0<hid = sup{.[|fg|dt: feM, f*=h}:jhg*dt;
0 0

heQ & 3IfeA,,: f'=h .

Then,

Jol. -se{ [ noat: neaifp,, <1 |-|o[,
0

To estimate H g’ H o We apply Theorem 4.3 and obtain the following result.
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Theorem 5.1. Let @, ¥ be complementary Young functions; let
0<V( jvdr<oo VteR,, V(+w)=ow.

For fixed 0<a <1 the following two-sided estimate holds

p.(g")

by e {’bO: T‘P(ﬂ‘l Pa(g*Jt))V(t)dtél},

pugit)=v (1) j()g*mdr, 5,(1):=V *(aV (1)), teR,

Remark 5.2. Assume additionally that in Theorem 5.1 @« (Az).Then,

t
1J'g
0

lo. =

(5.5)

(5.6)
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Let (I1, ) be the measure space with nonnegative full o - finite measure 77; let

3.7
L, =L, (T1,3,7 ) be the set of all ;- measurable functions u:TI—-R; L, ={ueL: u>0}.
Theorem 5.3. Let Y — L, be some IS with a quasi-norm ||-||,, P: M*— L be a monotone

operator satisfying the following condition: there exists C €[1, o ) such that
[Pt <c|pi],. fem™(R,). (5.7)

Then,

[Plaoy <[Pl <C|Pl,y -

Q ->Y Ay oY

Corollary 5.4. Under assumptions of Theorem 5.3 we have

|P

Ny =Y :” ”s»Y '
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Remark 5.5. In Theorem 5.3 we reduce estimates for monotone operator P on the weighted
Orlicz — Lorentz class A, , to the estimates on the cone S of nonnegative step-functions from
Orlicz space L, ,. In many cases such reduction admits us to apply known results for step-

functions or their pure discrete analogues for obtaining needed results on A, , .

Remark 5.6. Theorem 5.3 covers the operators

(Pf)(x)=Tk(X,T)f(T)dT, xell, feM? (5.8)

0

with nonnegative measurable k on TTxR., such that k(x,z) is decreasing and right-

continuous as function of 7 € R, . Indeed, for 7 - almost all x € IT we have by Hardy’s lemma,

(P1)(x) <[ k(x)t () de=(Pf)(x).

Then, for IS Y =Y (IT) we have [P f |, <[P f"

v’
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Remark 5.7. Theorem 5.3 covers maximal operator M: M | (R+)—> M., (R+) :

(Mf)(x):sup{|A|lj f(z)dz: AcR,; XEA},

A

when Y =Y (R, ) is an RIS. Indeed, for any RIS Y there exists unique RIS Y =Y (R, ):

*

la], :Hg*HY~ . geM(R,), see [11; Ch. 2]. Let us note that (M f* ) =M f*. Then, we

have
LM (YR D W Y W LA P
It is well-known that C [1,00) : (M f )"(x)<C (M f*)(x) | see [11;Ch.2] .Therefore,
M|, =[(mf) | =c M| —c|mi],
This coincides with (5.7) for P =M, and Theorem 5.3 is applicable here.

Thanks for your attention!



22

References
[1] M.A. Kpachocenbckuii u 5. B. Pyrutikuii, Boinykiavie ¢pynkyuu u npocmpancmea Opnuua,
Mockga, 1958; English transl. Groningen, 1961.
[2] L. Maligranda, Orlicz spaces and interpolation, Sem. Mat., 5, University Campinas, SP
Brazil, 1989.
[3] C.T. Kpeiin, 0. U. Ierynun, u E. M. CemeHoB, Humepnonsyus tuHetinbix onepamopos,
Hayka, Mocksa, 1978; English transl. in AMS, Providence, 1982.
[4] H. Hudzik, A. Kaminska, and M. Mastylo, On the dual of Orlicz-Lorentz space, Proc.
Amer. Math. Soc., 130, no. 6 (2002), 1645-1654.
[5] B. U. OBunnHUKOB, MHmepnonsiyus 6 K6A3UHOPMUPOBAHHbIX npocmparncmeax Opauua,
OyHKIMOHATBHBIN aHaNU3 U npuwioxenns, 16 (1982), 78-79; English transl. in Funct. Anal

. Appl. 16 (1982), 223-224.



23
[6] I1. I1. 3abpeiiko, Humepnonayuonnas meopema OJist IUHEUHbIX Onepamopos, Marem.
3amerku, 2 (1967), 593-598.
[7] J1. B. Kantoposu4 u I'. I1. AkunoB, @yuxyuonanehulii anaius, 3-¢ uznanue, Hayka,
Mockga, 1984; English Edition: Pergamon Press, Oxford-Elmsford, NY, 1982.
[8] I. 51. JlozanoBckwuit, O Hekomopuix 6anaxoewix peuwemkax, Cub. Matem. XKypn.,10 (1969),
584-599; English. Transl. in Siberian Math. J. 10 (1969), 419-431.
[9] T. 51. Jlo3anoBckuit, O Hekomopuix b6anaxoswvix peuremrax, 2 , Cub. Marem. XKypHh.,12
(1971), 562-567; English. Transl. in Siberian Math. J. 12 (1971), 419-431.
[10] V. I. Ovchinnikov “The method of orbits in interpolation theory”, Math. Reports, 1, Part
2, Harwood Academic Publishers (1984), 349-516.
[11] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad.

Press, Boston, 1988.



24
[12] M. L Goldman and R. Kerman, “On the principal of duality in Orlicz-Lorentz spaces”,
Function spaces. Differential Operators. Problems of mathematical education, Proc. Intern.
Conf. dedicated to 75-th birthday of prof. Kudrjavtsev, 1, Moscow, 1998, 179-183.
[13] H. Heinig and A. Kufner, “Hardy operators on monotone functions and sequences in Orlicz
Spaces”, J. London Math. Soc. 53, no. 2 (1996), 256-270.
[14] A. Kaminska and L. Maligranda, “Order convexity and concavity in Lorentz spaces

A ., 0< p<oo”, Studia Math., 160 (2004), 267-286.

[15] A. Kaminska and M. Mastylo, “Abstract duality Sawyer formula and its applications”,
Monatsh. Math., 151, no. 3 (2007), 223-245.

[16] A. Kaminska and Y. Raynaud, “New formula for decreasing rearrangements and a class of
Orlicz-Lorentz spaces”, Rev. Mat. Complut., 27 (2014), 587-621.

[17] E. Sawyer, ‘Boundedness of classical operators on classical Lorentz spaces”, Studia Math.,

96 (1990), 145-158.



